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Quantal Poincaré-Cartan Integral Invariant
for Field Theory

Zhang Ying1,3 and Li Ziping1,2

On the basis of the phase-space generating function of Green function for a system with
a regular/singular Lagrangian, the quantal Poincaré-Cartan integral invariant (PCII) for
field theory is derived. This PCII is equivalent to the quantal canonical equations. For
this case in which the Jacobian of the transformation does not equal to unity, the quantal
PCII can still be derived. This case is different from the quantal first Noether theorem.
The quantal PCII connected with canonical equations and canonical transformation is
also discussed.
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1. INTRODUCTION

The motion of microcosmic particles can be described by quantum theory.
For the transition from the classical theories to the quantum theories, the path-
integral quantization can be used as well as the formulation of canonical (operator)
quantization. The two formulations are equivalent. In the formulation of path-
integral quantization, the main ingredient is the classical action together with
the measure in the space of field configurations. Thus path integrals provide a
useful tool for studying the quantum symmetries of a system. The phase-space
path integrals are more fundamental than the configuration-space path integrals
(Mazrabi, 1978).

The PCII plays an important role in mechanics and field theories since, from
its invariance it follows that the equations of motion of the dynamical system
are canonical equations. It can be treated as a fundamental dynamical principle
in classical theories. For a system with a regular/singular Lagrangian, the PCII
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is equivalent to the classical canonical equations. The PCII has been extended
to the nonholonomic system at the classical level (Gantmacher, 1970; Li and Li,
1990; Li and Wu, 1994; Mei et al., 1991). The generalized PCII for a system with a
higher order Lagrangian was also studied (Li, 1993; Li and Jiang, 2002). Howerver,
these investegation of the PCII for the system are developed at the classical level
(Benavent and Gomis, 1979; Dominici and Gomis, 1980). It needs further study
whether they hold true or not at the quantum level.

In Li and Li (2001), the quantal PCII for the system with finite degrees of
freedom has been developed, but the symbol of ground state still appears in the
PCII. In this paper, based on the phase-space generating function of Green function
for a system with a regular/singular Lagrangian, the quantal PCII in field theories
is derived and the symbol of the ground state is eliminated. It is pointed out that
the quantal PCII is equivalent to the quantal canonical equations. The quantal
PCII connected with canonical equations and canonical transformation is also
discussed. For this case in which the Jacobian of the transformation is not equal to
unity, the quantal PCII can be still derived. This case is different from the quantal
first Noether theorem. The comparisons of the results at the quantum level and
those in classical theories are discussed.

2. THE QUANTAL PC INTEGRAL INVARIANT

Let us first consider a system with a regular Lagrangian described by the
field variables ψα(x)(α = 1, 2, . . . , n), x = (x0, xi ), (x0 = t , i = 1, 2, 3). The
motion of the field is described by a Lagrangian density L(ψα , ψα

µ). Introducing
the exterior Jα(x) and K α(x) with respect to the fields ψα(x) and their canonical
momentum πα(x), respectively. The generating functional of the Green function
in phase space for this system can be written as (Li and Jiang, 2002)

Z [J, K ] =
∫

Dψα
D0πα exp

{
i

[
I P +

∫
d4x(Jαψα + K απα)

]}
(1)

We consider the space coordinates xi to be a fixed parameter (Musicki, 1978).
A “curve” in the phase space is defined by

ψα = ψα(t , θ ), πα = πα(t , θ ) (2)

where θ is a parameter. Let us consider the infinitesimal transformation in extended
phase space which arise from the change of the parameter θ (xi is fixed).




t → t ′ = t + �t(θ )

ψα(t , xi ) → ψ ′α(t ′, xi ) = ψα(t , xi ) + �ψα(t , xi , θ )

πα(t , xi ) → π ′
α(t ′, xi ) = πα(t , xi ) + �πα(t , xi , θ )

(3)
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where θ satisfy

ψ ′α(t , xi , 0) = ψα(t , xi ), π ′
α(t , xi , 0) = πα(t , xi ) (4)

Under the transformation (3), the variation of the canonical action is given by

�I p =
∫

d4x

(
δ I P

δψα
δψα + δ I p

δπα

δπα

)

+
∫

d4x

{
∂µ[(παψ̇α − Hc)�xµ] + d

dt
(παδψα)

}
(5)

where
δ I p

δψα
= −π̇α − δHc

δψα
,

δ I p

δπα

= ψ̇α − δHc

δπα

(6a)

Hc =
∫

V
dx3

Hc =
∫

V
dx3(παψ̇α − L

p) (6b)

The relations between the substantial variations δψα , δπα and the total vari-
ations �ψα , �πα are given by

δψα = �ψα − ψα
µδxµ = �ψα − ψα

,0�x0 (7a)

δπα = �πα − πδ
α,µxµ = �πα − πα,0�x0 (7b)

Let it be supposed that the Jacobian of the transformation (3) of the field
variables is J̄ (θ ) = 1 + J1(θ )( J̄ (0) = 1). The smoothed function J1(θ ) can be ex-
pressed by using a total differential function Q(θ ) i.e. J1(θ ) = dQ(θ )/dθ . Under
the transformation (3), the generating function is invariant which can be written as

Z [J, K ] =
∫

Dψα
Dπα

{
1 + dQ/dθ + i

∫
dx4

[(
δ I P

δψα
+ Jα

)
δψα

+
(

δ I p

δπα

+ K α

)
δπα

]
+ i

∫
dx4

{
∂µ[(παψα − Hc)�xµ]

+ d

dt
(παδψα)

}}
· exp

{
i

[
I p +

∫
dx4(Jαψα + K απα)

]}
(8)

From the invariance of the generating functional (1) under the transformation
(3), one obtains∫

Dψα
Dπα

{
dQ/dθ + i

∫
dx4

[(
δ I P

δψα
+ Jα

)
δψα +

(
δ I p

δπα

+ K α

)
δπα

]

+ i
∫

dx4

{
∂µ[(παψ̇α − Hc)�xµ] + d

dt
(παδψα)

}}

· exp

{
i[I p +

∫
dx4

(Jαψα + K απα)]

}
= 0 (9)
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Functionally differentiating (9) with respect to Jα , one obtains∫
Dψα

Dπα

({
idQ/dθ −

∫
dx4

[(
δ I P

δψα
+ Jα

)
δψα +

(
δ I p

δπα

+ K α

)
δπα

]

−
∫

dx4

{
∂µ

[
(παψ̇α − Hc)�xµ

] + d

dt
(παδψα)

}}
· ψα(x1) + i Nασ

)

· exp

{
i

[
I p +

∫
dx4(Jαψα + K απα)

]}
= 0 (10)

where

Nασ = δψα = �ψα − ψα
,0�x0 (11)

Then, functionally differentiating (9) with respect to Jα a total of n times, one gets∫
Dψα

Dπα

({
idQ/dθ −

∫
dx4

[(
δ I P

δψα
+ Jα

)
δψα +

(
δ I p

δπα

+ K α

)
δπα

]

−
∫

dx4{∂µ[(παψ̇α − Hc)�xµ] + d

dt
(παδψα)}

}
· ψα(x1)ψα(x2) · · · ψα(xn)

+ i
∑

j

ψα(x1) · · · ψα(x j−1)ψα(x j+1) · · · ψα(xn) · Nασ + i Nασ

)

· exp

{
i

[
I p +

∫
dx4(Jαψα + K απα)

]}
= 0 (12)

Let J = K = 0 in (12), one gets (Young, 1987)

〈0|T ∗
[
−idQ/dθ +

∫
d4x

(
δ I p

δψα
δψα + δ I p

δπα

δπα

)

+
∫ t2

t1

D
∫

V
d3x(πα�ψα − Hc�t)

]
ψα(x1)ψα(x2) · · · ψα(xn)|0〉

− i〈0|
∑

j

ψα(x1) · · · ψα(x j−1)ψα(x j+1) · · · ψα(xn) · Nασ + Nασ |0〉 = 0

(13)

Where the symbol T ∗ stands for the covariantized T product (Young, 1987),
D = d

dt . From (11) one can see that the smoothed function of θ can also be
expressed as

〈0|
∑

j

ψα(x1) · · · ψα(x j−1)ψα(x j+1) · · · ψα(xn) · Nασ |0〉 = f (θ ) = d F(θ )/dθ

(14a)

〈0| Nασ |0〉 = g(θ ) = dG(θ )/dθ (14b)
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Fixing t and letting t1, t2, . . . , tm → +∞, tm+1, tm+2, . . . , tn → −∞, noting
that ψα(

⇀

x , −∞) |0〉 = |1, in〉, 〈0| ψα(
⇀

x , ∞) = 〈out , 1| and using the reduction
formular (Young, 1987), one can write the expression (13) as

〈out , m| T ∗
[∫

d4x

(
δ I p

δψα
δψα + δ I p

δπα

δπα

)
|out , m〉 + 〈out , m|

×
∫

V
d3x(πα�ψα − Hc�t)

]
|n − m, in〉|t1 − 〈out , m|

×
∫

V
d3x(πα�ψα − Hc�t) |n − m, in〉|t2 = i{dF/dθ

+ dG/dθ + 〈out , m| dQ/dθ |n − m, in〉} (15)

Let C1 be any simple closed curve encircling the tube of quantal dynamical
trajectories in extended phase space. θ = 0 and θ = l are same points on C1.
Through any point on C1, there are those dynamical trajectories of the motion.
Choose another closed curve C2 on this tube of trajectories such that it encircles
this tube and intersects the generatrix of the tube once. Take the integral of the
expression (15) with respect to θ along curves C1 and C2 (Gantmacher, 1970), one
has

∮
c1

〈out , m|T ∗
∫

V
d3x(πα�ψα − Hc�t)|n − m, in〉

−
∮

c2

〈out , m|T ∗
∫

V
d3x(πα�ψα − Hc�t)|n − m, in〉

+
∮

c
〈out , m|T ∗

∫
d4x

(
δ I p

δψα
δψα + δ I p

δπαδnα

)
|n − m, in〉

= i
∮

ck

{[dF/dθ + dG/dθ ] + 〈out , m|dQ/dθ |n − m, in〉} (16)

Since θ = 0 and θ = l are same points on the closed curve, along those closed
curves, the integral of f (θ ), g(θ ), and J1(θ ) must be equal to zero. Due to m and
n are arbitrary, we have

∮
c1

T ∗
[∫

V
d3x(πα�ψα − Hc�t)

]
−

∮
c2

T ∗
[∫

V
d3x(πα�ψα − Hc�t)

]

+
∮

c
T ∗

[∫
d4x

(
δ I p

δψα
δψα + δ I p

δπα

δπα

)]
= 0 (17)

Now, we deduce the quantum canonical equations for this system, since
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(Henneaux and Teitelboim, 1992)

〈ψ ′α , t ′| δ I p

δψα
|ψα , t〉 =

∫
Dψα

Dπα

δ I p

δψα
exp{i I P} (18a)

〈ψ ′α , t ′| δ I p

δπα

|ψα , t〉 =
∫

Dψα
Dπα

δ I p

δπα

exp{i I P} (18b)

for the arbitrary state
∣∣ψ ′α , t ′〉 and |ψα , t〉, from the classical canonical equations

( δ I p

δψα = 0, δ I p

δπα
= 0), we can obtain

〈ψ ′α , t ′| δ I p

δψα
|ψα , t〉 = 〈ψ ′α , t ′| δ I p

δπα

|ψα , t〉 = 0, (19)

Because
∣∣ψ ′α , t ′〉 and |ψα , t〉 are arbitrary, thus the quantum dynamical tra-

jeories are determined by following quantal canonical equations

δ I p

δψα
= 0,

δ I p

δπα

= 0 (20)

Using the quantal canonical equations (20), one has

W = T ∗
∮

c

∫
V

d3x(πα�ψα − Hc�t) = inv (21)

Therefore, with an arbitrary displacement and the deformation of the closed
curve C along any tube of those dynamical trajectories, the integral W along the
closed curve C is an invariance. W is called the Poincare-Cartan integral which is
invariant for the system with a regular Lagrangian in field theories at the quantum
level.

For a system with a singular Lagrangian, let �k(t , ψα , πα) ≈ 0(k =
1, 2, . . . , a) be first-class constraints, and θi (t , ψα , πα) ≈ 0(i = 1, 2, . . . , b) be
second-class constraints. The gauge conditions connecting with the first-class con-
straints are �l(t , ψα , πα) ≈ 0(l = 1, 2, . . . , a). According Faddeeve-Senjanovic
quantization formulation, the phase-space generating functional of Green func-
tion for the system with a singular Lagrangian is given by (Li and Jiang,
2002)

Z [J, K ] =
∫

Dψα
Dπα

∏
i,k,l

δ(θi )δ(�k)δ(�l) det |{�k , �l}| [det
∣∣{θi , θ j }

∣∣]1/2

· exp

{
i

[
I P +

∫
G

d4x(Jαψα + K απα)

]}
(22)

Using the properties of the δ-function and the properties of the Grassmann
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variables Ca(x) and C̄a(x), the expression (22) can be written as

Z [J α , Kα , ηm , j̄ , k̄, j, k] =
∫

DϕαDπα
DλmDC̄aDπa

DCaDπ̄a

× exp

{
i
∫

d3x
(
L P

eff + J αϕα + Kαπα + ηmλm

+ j̄ aCa + C̄a ja + k̄aπ
a + π̄aka

)}
(23)

where

L
P
eff = L

P + Lm + Lgh (24)

L
p = παψ̇α − Hc (25)

Lm = λiθi + λk�k + λl�l (26)

Lgh =
∫

d3 y[C̄k(x){�k(x), �l(y)}Cl(y)

+ 1

2
C̄i (x){θi (x), θ j (y)}C j (y)] (27)

and λm = (λk , λl , λi ), λk , λi and λl are multiplier fields connected with the con-
straints �k , θi and �l , respectively. π̄a(x) and πa(x) are canonical momenta conju-
gate to Ca(x) and C̄a(x), respectively, here we have introduced the exterior sources
ηm , j̄ a , k̄a , j a , and ka with respect to the fields λm , Ca , πa , C̄a and π̄a , respectively.
Thus, the quantal canonical equations are determined by Heff = παψ̇α − L

p
eff. for

the system with a singular Lagrangian. Hence, we can still proceed in the same way
to obtain the PCII for the system with a singular Lagrangian when the Jaconbian
of the transformation (3) is not equal to unity. But in the result for this case, one
must use Heff instead of Hc in expression (21)

W ′ = T ∗
∮

c

∫
V

d3x(πα�ψα − Heff�t) = inv (28)

The closed curves must satisfy all the constraint conditions. It can be shown
that the quantal PCII for the system with a singular Lagrangian can also be derived
when the effective action I p

eff instead of I p.

3. QUANTAL PC INTEGRAL INVARIANT
AND QUANTAL CANONICAL EQUATIONS

Now, we first consider the discrete system. We can divide the space domain
V into a very large number of small cells and use �Vi to denote the volume of
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i-th cell; ψα
i , the average of the variables ψα(x) on �Vi and pi

α(t), the canonical
momenta corresponding to ψα

i . Thus, pi
α(t) = π i

α�Vi (not summing up i). In this
way the discrete case for expression (21) can be written as

W = T ∗
∮

c

(
pi

α�ψα
i − Hc�t

) = inv (29)

When �Vi → 0, ψα
i (t) → ψα(�x , t), π i

α(t) → πα(�x , t), the continuous limit
of (29) converts into expression (21). Using this result, it is easy to extend the
conclusion of the discrete system to the system in the field theories (Li, 1993).

In classical theories, it has been proved that PCII is equivalent to the classical
motion equations (Benavent and Gomis, 1979; Dominici and Gomis, 1980; Li
and Jiang, 2002). We can show that this equivalent relation at the quantum level
still holds true. Now we study the inversion of the Section 2, i.e. the quantum
equations can be derived from the quantal PCII for the system with regular/singular
Lagrangian. Let it be first considered that the quantal motion equations of the
discrete system in the phase space which is given by (Mei et al., 1991) (similar to
the analysis of (18)–(20), operators can be converted into classical numbers)

ψ̇α
i = dψα

i

dt
= Qα

i

(
t , ψα

i , pi
α

)
, ṗi

α = dpi
α

dt
= Pi

α

(
t , ψα

i , pi
α

)
(30)

From (21), we can obtain

0 = d

dt
W ′ =

∮
c

(
dpi

α

dt
�ψα

i + pi
α

d

dt
�ψα

i − d Hc

dt
�t − Hc

d

dt
�t

)

=
∮

c

[
dpi

α

dt

(
δψ i

α + ψ̇α
i �x0

) + pi
α

d

dt

(
δψ i

α + ψ̇α
i �x0

) − d Hc

dt
�t

]
(31)

Using integrating by parts, from (31), one obtains

0 =
∮

c

[
dpi

α

dt
δψα

i + pi
αδ

d

dt
ψα

i − d Hc

dt
�t

]

=
∮

c

[
dpi

α

dt
δψα

i − dψα
i

dt
δpi

α − d Hc

dt
δt

]
= 0 (32)

From Eq. (32), one obtains∮
c

[
Pi

αδψα
i − Qα

i δpi
α − d Hc

dt
δt

]
= 0 (33)

Because the contour of the integrating is arbitrary, and then the integrand is
the variation of −Hc(t , ψα

i , pi
α),

Pi
αδψα

i − Qα
i δpi

α − d Hc

dt
δt = −δHc

(
t , ψα

i , pi
α

)
(34)
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thus

Pi
α = − ∂ Hc

∂ψα
i

, Qα
i = ∂ Hc

∂pi
α

, (35)

It is to say that the equivalence between the quantal canonical equations and
the quantal PC integral invariant is proved for the system with a regular Lagrangian.

One can still proceed in the same way to obtain the equivalence between the
quantal canonical equations and the quantal PC integral invariant for the system
with a singular Lagrangian. But in this case, (ψα

i , Ci
a , C̄ i

a , ηm
i ) and (pi

α , pa
i , p̄a

i )
should be used instead of ψα

i and pi
α , and Heff should be used instead of Hc.

From the above discussion we can show that the necessary and sufficient
condition for the equation of motion to be quantal canonical equations is that the
PC integral be invariant at the quantum level.

When �Vi → 0, the continuous limit of (35) convert into (20), thus the
equivalence between the quantal PCII and the quantal canonical equations of the
discrete system can be extended to the system in the field theories.

4. THE QUANTAL PCII AND THE
CANONICAL TRANSFORMATION

The canonical transformation in field theories can be stated as follows. Sup-
pose the equations of motion of a dynamical system are given by Eq. (20). Then the
canonical transformation is to be defined as such transformation of the canonical
variables ψα , πα .

ψα∗ = Q′α(t , ψα , πα), π∗
α = P ′

α(t , ψα , πα) (36)

which leaves the form of Eq. (18) of the system to be invariant. If under transfor-
mation two function H∗

c = ∫
V d3x H∗

c (for the system with a singular Lagrangian,
Heff should be used instead of Hc) and G exist so that∫

V
d3x(πα�ψα − Hc�t) =

∫
V

d3x(π∗
α�ψα∗ − H

∗
c�t) + �G (37)

Then transformation is canonical, and G is called generating function. In fact,
one can choose a close curve in the extended phase space, from (37) one can obtain∮

c

[∫
V

d3x(πα�ψα − Hc�t) −
∫

V
d3x(π∗

α�ψα∗ − H
∗
c�t)

]
= 0 (38)

If C∗ is a closed curve obtained from C by means of the transformation (36),
then (38) can be written as∮

c

[∫
V

d3x(πα�ψα − Hc�t) =
∮

c′′

∫
V

d3x(π∗
α�ψα∗ − H

∗
c�t)

]
(39)
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Because the ψα and πα satisfy the equations of motion (20), the left-hand
side of Eq. (39) is PCII at the quantum level, i.e. the left-hand side of Eq. (39) is
invariant with the displacement and deformation of the closed curve C along the
tube of the dynamical trajectories given by the solution of Eq. (20). Therefore, the
right-hand side of Eq. (39) will be invariant with the displacement of the closed
curve C∗ along the tube obtained by means of the transformation (36). That is to
say , the right –hand side of Eq. (39) is also a PCII at the quantum level with respect
to the transformed new variables. Thus, the transformed trajectories must satisfy
the quantal canonical equations of the system, and therefore, the transformation
(36) is canonical(Li, 1993).

5. DISCUSSION AND CONCLUSION

On the basis of the invariance of phase-space generating function of Green
function, considering the transformation property in the extended phase space,
along the quantal motion trajectories, the quantal PCII in field theory for a system
with a regular/singular Lagrangian is derived. It is proved that the PCII is equiva-
lent to the quantal canonical equations, thus the classical PCII is extended to the
quantum level. For the singular system, the quantal PCII should be determined by
the effective Hamiltonian Heff not the canonical Hamiltionian Hc, the Heff involves
all constraints and gauge conditions. This is different from the classical theories
at all. In classical theories, the expressions of PCII for a regular system and a sin-
gular system are completely similar. The differences are that the variations of the
canonical variables for a system with a regular Lagrangian are arbitrary but that of
the system with a singular Lagrangian are restricted by the constraint conditions
(the constraint conditions are invariant under the simultaneous variation). Both are
canonical Hamiltonian Hc that involves in PCII at the classical level. This result
also differs from the quantum case. The expressions of PCII for the system with
a regular Lagrangian and the system with a singular Lagrangian are similar when
�t = 0 at quantum level.

The conserved quantities corresponding to the classical symmetries perhaps
do not exist at the quantum level. The case is called quantum anomaly. For ex-
ample, in the Noether theorem at the quantum level, due to the constraints for the
system with a singular Lagrangian in the phase space, the effective Hamiltonian
Heff is different from the canonical one Hc. Moreover, the quantal conserved quan-
tities can be obtained if the effective canonical action is invariant under the global
transformation in phase space and the Jacobian of the corresponding local transfor-
mation is equal to unity. In general, there is quantum anomaly when the Jacobian
of the transformation is not equal to unity. But this case does not occur for the PCII.
Even if the Jacobian of the transformation is not equal to unity, the PCII can also
be derived. The case is different from the quantal first Noether theorem. The cause
arises from the equivalence between the PCII and the quantal canonical equations.



Quantal PCII for Field Theory 2433

ACKNOWLEDGMENTS

This work was supported by the National Natural Science Foundation of
People’s Republic of China and Beijing Municipal Natural Science Foundation.

REFERENCES

Benavent F and Gomis. J. (1979). Annals of Physics (NY) 118, 476.
Dominici, D. and Gomis, J. (1980). Jounal of Mathematical Physics 21, 2124.
Gantmacher, F. (1970). Lecture in Analytical Mechanic, Mir, Moscow.
Henneaux, M. and Teitelboim, C. (1992). Quantization of Gauge System, Princeton University Press,

Princeton, NJ.
Li, Z. P. (1993). Science in China 36, 1212.
Li, Z. P. and Jiang J. H. (2002). Symmetries in Constrained Canonical Systems, Science Press, Beijing.
Li, Z. P and Li, X. (1990). International Journal of Theoretical Physics 29, 765.
Li, R. J. and Li, Z. P. (2001). Journal of Beijing Polytechnic University 27, 187.
Li, Z. P. and Wu, B. C. (1994). International Journal of Theoretical Physics 33, 1063.
Mazrabi, M. M. (1978). Journal of Mathematical Physics 19, 298.
Mei, F. X., Liu, R., and Luo, Y. (1991). Higher Analytical Physics. (in Chinese).
Musicki, D. (1978). Journal of Physics A 11, 39.
Young, B. L. (1987). Introduduction to Quantum Field theories, Sience Press, Beijing.


